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Abstract

Visual art communicates more than physical content —
it evokes emotion, atmosphere, and cultural context. Yet
existing image captioning models often reduce artworks
to mere object lists, missing their expressive and stylistic
depth. This limitation especially impacts blind and visu-
ally impaired users who rely on captions for interpretive ac-
cess. Our project addresses this gap and improves the artis-
tic expressivity of image captioning models by fine-tuning a
BLIP-based captioning model based on multiple classifica-
tion tasks (e.g. emotion, style, school, etc.), enabling it to
generate descriptions that capture both what is shown in a
painting and also how it ”feels”. First, we use vision trans-
former models to fine-tune classifiers to predict for subjec-
tive labels like emotion, style, and school, then add the loss
to the encoder for the captioning model to learn such latent
features. Results show that our training process improves
the expressivity and captioning quality of the model; com-
pared with both the frozen BLIP baseline and a caption-only
fine-tune, our multi-head model produces markedly richer
prose while retaining factual grounding. The trained vari-
ants improve BLEU by +8 points over caption-only fine-
tuning and boosts METEOR to 11.1 while nearly doubling
adjective density and Flesch–Kincaid grade: resulting in
multiple models that vary in expressiveness and style. 1

1. Introduction
Visual art conveys not only objects and scenes but also

stylistic nuances and emotional resonance. However, state-
of-the-art image captioning models, trained primarily on
photographic datasets, tend to generate factual but expres-
sionless descriptions when applied to artworks, limiting ac-
cessibility for blind and visually impaired users. To address
this, we introduce Cap4Art, a multi-task learning frame-
work that fine-tunes a BLIP-based vision-language model
on art-specific data while jointly learning emotion classi-

1The code can be found at https://github.com/sunnyych/Cap4Art

fication and other tasks. Our model explicitly incorpo-
rates emotional classification into the captioning process
through a multi-task learning approach. We fine-tune a
BLIP-based vision–language model to jointly generate cap-
tions and classify artworks into one of nine affective cate-
gories, encouraging the image encoder to internalize emo-
tionally salient features. Our model leverages ArtEmis
emotion labels [1], WikiArt Emotion [10] annotations, and
image-level information from SemArt [5] to train classifica-
tion models to generate emotion, style, and school labels for
unseen data. Then we leverage this information to encour-
age the encoder to capture affective and stylistic features.
During training, we combine the standard captioning loss
with auxiliary emotion classification loss and the classifica-
tion loss for all the classification heads, guiding the network
to internalize emotionally salient cues and other stylistic in-
formation.

Evaluated on ArtPedia [14], Cap4Art outperforms the
original BLIP [7] baseline in most metrics that measure
the linguistic richness and semantic diversity of the lan-
guage. We also ablate on the weights for each image fea-
ture (emotion, sty;e, type, school) and a balanced one with
equal weights to all features, and discuss the trade-off be-
tween factual accuracy and linguistic expressivity. We find
that overall, the model trained based on equal weights for
each feature has the best performance. In particular, its
METEOR score increases to 11.1, indicating the genera-
tion of a richer and more complex language. Qualitative
analysis further shows that our generated captions exhibit
greater artistic expressiveness. These results demonstrate
that multi-task training can bridge the gap between factual
accuracy and emotional depth, improving the accessibility
of fine art for non-sighted audiences.

2. Related Work

Recent work in artwork captioning emphasizes the need
to move beyond object recognition to capture emotional
and stylistic dimensions of visual art. [17] leverage CLIP-
based multimodal models to generate affect-rich captions,
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demonstrating the value of contrastive pretraining for align-
ing vision and language in artistic domains. [15] introduce
ZeroCap, a zero-shot captioning framework that avoids
paired training data by optimizing latent representations,
showcasing the potential of flexible generative pipelines.
Additionally, [6] propose a knowledge graph-enhanced
captioning model that incorporates cultural and contextual
knowledge, improving the richness of generated text. Our
work builds on these foundations by integrating emotion
classification and art-specific metadata into a BLIP-based
captioning model to generate more expressive and accessi-
ble descriptions of visual art.

Other state-of-the-art methods include [12, 2], which
present a tripartite approach for artistic outpainting that har-
monizes image-to-text and text-to-image generation pro-
cesses. Other methods, such as [3, 17], leverage CLIP-
based models to further explore the complexities of trans-
forming images into corresponding textual descriptions
through an innovative ensemble framework based on con-
trast language image pretraining (CLIP). Additionally, data-
efficient methods such as [9, 8] propose a novel training pro-
cess aimed at achieving higher data efficiency in captioning
fine art, utilizing a virtual-real semantic alignment training
process to enhance the feature extraction process and sup-
port effective learning.

Given the inherently subjective nature of art, many work
have sought to provide annotations for the subjective fea-
tures. For example, [11, 4] offers a distinct approach by col-
lecting a comprehensive dataset of artistic styles described
through natural language captions. Moreover, [13] empha-
sizes the evolution of methodologies and technologies that
enhance the generation of descriptions for visual art, focus-
ing not only on technical accuracy but also on the emotional
and narrative dimensions that contribute to a richer user ex-
perience.

3. Data
We leverage several existing datasets with art-image-text

pairs. [1] is a dataset with image-emotion pairs (where
crowdsource workers annotated each image as one of the
following emotions: amusement, anger, awe, contentment,
disgust, excitment, fear, sadness, or something else) 2 .
Other datasets used for training the classifiers: [5] is a multi-
modal dataset for semantic art understanding that includes
fine-art painting images with text attribute labels including
school, type, time frame, technique, and so on. In our ex-
perimentation, we use the school and type labels to train

2The dataset only provides image names from WikiArt https://
www.wikiart.org/. To access the images, we extracted the image urls
from the Kaggle dataset https://www.kaggle.com/datasets/
antoinegruson/-wikiart-all-images-120k-link/data
by matching with the image file names in [1]

classification models. Another dataset that we use is [10], a
dataset of 4,105 pieces of art (mostly paintings) with human
annotations for the emotions evoked. Specifically, there
are twenty emotion categories, which provide fine-grained
emotion categorizations. We use the labels to train classi-
fiers for emotions in art. Full details of the training data
used for each classifier is included in Tab 3.

Dataset Source Size Features

[1] 455K Emotion, Style
[5] 21394 School, Type, Time Frame, Technique
[10] 4105 Emotions

Table 1. The size and features information for the training data
used.

We use [14] for evaluation. The data set contains a
collection of 2,930 painting images, each associated with
a variable number of textual descriptions. We intend to
use the human-annotated captions as ground truth reference
[16] to evaluate our Cap4Art model.

4. Methods
4.1. Emotion Classification and Ablations

Model Training Accuracy Test Accuracy

clip 25.87% 25.60%
vit 49.48% 30.37%
convnext 49.58% 29.19%
Table 2. Training and test accuracy for three different models, re-
spectively openai/clip-vit-base-patch32, google/vit-base-patch16-
224-in21k, and convnext base.fb in22k (from top to bottom) on
the emotion classification task using training data from [1] using
the full dataset.

We first perform classification of the emotion labels us-
ing various models to examine the effects of training data
quality, size, and models using data from [1].

Training Details. To provide emotion classification
ground truths, we explore fine-tuning with three pretrained
vision architectures on the ARTEMIS dataset for emotion
classification: ViT 3, ConvNeXt 4, DINO 5, and CLIP 6.
Each model was trained to predict one of nine emotional

3google/vit-base-patch16-224-in21k architecture via the
HuggingFace ViTForImageClassification class and employed
the associated image processor for input normalization

4We adopted the convnext base.fb in22k architecture from the
Timm library

5Adopted vit base patch16 224 dino from the Timm library
6leveraged the vision encoder from

openai/clip-vit-base-patch32, augmenting it with a lin-
ear classification head while using the HuggingFace CLIPProcessor
for image preprocessing

https://www.wikiart.org/
https://www.wikiart.org/
https://www.kaggle.com/datasets/antoinegruson/-wikiart-all-images-120k-link/data
https://www.kaggle.com/datasets/antoinegruson/-wikiart-all-images-120k-link/data


Figure 1. Computation graph of the modified BLIP-based captioning model. In addition to generating captions from visual features,
the model incorporates a ”mixture” of different artistic classification heads to help the image encoder capture the emotional essence of
a painting. This dual-objective setup leverages BLIP’s strong visual pretraining while fine-tuning on Artpedia’s small but high-quality
caption dataset. Losses from both tasks are combined and backpropagated through the network.

categories. For all experiments, we used a batch size of 32
and trained for 30 epochs using the AdamW optimizer with
a learning rate of 3× 10−4 and weight decay of 0.01. A co-
sine annealing learning rate scheduler was applied over the
training duration. The dataset was split into training (72%),
validation (18%), and test (10%) subsets with stratification
over emotion labels. The results are reported in Table 2.

Ablations We hypothesize that the initial low test accu-
racy could be a result of the noisy data 7. Therefore, we fil-
tered the Artemis dataset by annotator numbers and only in-
cluded images with more than 40 human annotations (where
the classification is the majority vote), resulting in a final
training set in Table 5. We fine-tuned vit and convnext us-
ing the smalldataset and report the results in Table 6. We
show the full training and validation curves in Appendix A

4.2. Style Classification

The same dataset provides labels for the style of the
painting, and we use the same base model to train a classi-
fier for style, resulting in a test accuracy of 100%, showing
that style classification is an easy task. We include the style
labels as metadata for the CLIP model.

4.3. Type and School Classification

Besides emotions, the style and school of a painting are
also important features that could provide helpful informa-
tion about the subjective visual experience of the artwork.
To predict for these features, we use ground-truth labels
from [5] to train two classifiers, one for predicting the type,

7emotion tagging is inherently subjective and there could be disagree-
ments among humans

and one for predicting the school. There are ten categories
for type, such as religious, portrait, landscape and mytho-
logical; and there are 26 categories for school, including
Italian, Dutch, French, Flemish, German, Spanish, etc.

Training Details The training dataset size is 19244, the
validation size is 1069, and the test size is 1069. Based on
ablation studies in Sec 4.1, we find that the vision trans-
former and convnext both perform reasonably well on the
classification task. Therefore, we chose to perform clas-
sification using convnext here. We explored training the
model from scratch but the performance was suboptimal, so
we instead fine-tune the pretrained convnext-base model on
the SemArt dataset to classify paintings into one of 26 Eu-
ropean art school categories (for school) or one of the ten
painting types (for type). The training process uses cross-
entropy loss with label smoothing and the AdamW opti-
mizer, with a cosine annealing learning rate scheduler over
10 epochs. Images are resized to 224×224 and augmented
during training with random horizontal flips, rotation, and
color jitter. The model is partially frozen, with only the
classification head being trainable. We used a batch size of
32.

Results The test accuracy for predicting the type for the
painting is 37.89%, and the test accuracy for the school of
the painting is 39.29%, and the training and test accuracy
for the last epoch is reported in Tab 3.

4.4. Fine-Grained Emotion Classification

Finally, to provide even more fine-grained information
about the subjective features of the paintings, we use emo-



Task Train Accuracy Validation
Type Classification 38.87% 39.85%
School Classification 41.63% 40.13%

Table 3. Training and validation accuracy for type and school clas-
sification tasks on the last epoch.

tion labels from [10] to predict the emotions evoked in a
painting. The dataset provides annotation results from many
annotators for the same image, including a distribution of
each of the possible emotions (the proportion). With this
information, we trained a classifier to model the distribu-
tion of the classes to match with the human annotation dis-
tributions. The other classifier we trained was based on the
majority label.

Training Details We fine-tuned two variants of the ViT-
Base model (vit-base-patch16-224-in21k) on the WikiArt
dataset for emotion recognition. The first model framed the
task as single-label classification using the majority emo-
tion label per painting and was trained with a cross-entropy
loss function. The second model treated emotion as a dis-
tribution prediction task, optimizing Kullback-Leibler (KL)
divergence between predicted and target soft labels derived
from annotator distributions. In both cases, only the clas-
sification head of the model was trainable, while the vi-
sion backbone was frozen. Models were trained using the
AdamW optimizer (learning rate = 3e-4, weight decay =
0.01) and a cosine annealing learning rate scheduler. Train-
ing was performed for 10 epochs with early stopping based
on validation accuracy.

Results The test accuracy for the classifier that predicts
the majority label is 26.34%, and the test accuracy for the
classifier that is trained based on KL divergence between
the annotator distribution and the logits is 20.43% 8.

4.5. DINO

We experimented with the ArtEmis dataset (43k+ im-
ages) to learn self-supervised “art features” via DINO on
two backbones: ViT-Base/163 and ConvNeXt-Base4. In
each run, we generated six augmented views per image (two
global 224×224 crops plus four local 96×96→224×224
crops) using random resized cropping, color jitter, hori-
zontal flips, and Gaussian blur to encourage both global-
and patch-level consistency. The DINO student–teacher
pair consisted of a ConvNeXt (or ViT) trunk followed by a
two-layer projection head (1024→2048→256 dimensions),
where the teacher was updated by a 0.996 momentum
from the student at each step. We warmed up the teacher

8This is calculated as taking the class with the maximum logits as the
predicted answer and checking if it matches with the ground truth

temperature from 0.04 to 0.07 over 10 epochs while us-
ing a cosine-annealed learning rate (1e-5→3e-4→1e-5) and
mixed-precision training. A running “center” of teacher
outputs prevented collapse by normalizing logits before
softmax. After only 15 epochs—roughly half of the 30
epochs commonly used in prior work, due to resource
constraints—the backbones may not have fully converged;
we then froze each backbone, appended a fresh two-layer
MLP, and trained only that MLP on ArtEmis emotion la-
bels. Under these conditions, ConvNeXt-Base (DINO)
achieved 26.18 % validation accuracy (versus 21.75 % for
ViT-Base/16)9, but both results should be viewed as con-
servative estimates. Consequently, we chose not to use this
DINO pretraining further for downstream models.

4.6. Captioning Model

For the caption generation task, we adopt the BLIP
model introduced by Li et al [7], a vision-language archi-
tecture composed of a Vision Transformer (ViT) encoder
and a Transformer-based language decoder. The ViT en-
codes an image into a sequence of visual tokens, including
a dedicated [CLS] token that summarizes the global visual
context. The decoder autoregressively generates text,
cross-attending to these visual tokens to produce natural
language captions. More details are included in Appendix B

Baseline As our primary baseline, we use the original
BLIP model for the purposes of captioning the artwork
(Salesforce/blip-image-captioning-base)
without any fine-tuning. We also fine-tune BLIP with only
ArtPedia data and no auxiliary heads to further isolate the
impact of our extra feature classification information. More
details are in Appendix B.

Multi-task Learning: To further encourage stylistic and
affective richness, we augment the BLIP model with four
auxiliary feature classification heads, each predicting a dis-
crete attribute of the artwork in addition to the caption. In-
spired by common use of the ViT [CLS] token for classifi-
cation tasks, we project the encoder’s final [CLS] embed-
ding through multiple MLP layers to predict the emotion
category:

• Style: Romanticism, Early Renaissance, Northern Re-
naissance, Impressionism, Post Impressionism, Sym-
bolism, etc.

• Art Type: religious, portrait, mythological, historical,
landscape, interior, genre, study, still-life

• Art School: Italian, Dutch, Portuguese, Swedish,
Flemish, French, Spanish, Belgian, etc.

9We also attempted to run DINO on a CLIP-ViT/326 backbone, but its
self-supervised loss plateaued within the first few epochs, so we did not
pursue it for downstream emotion classification.



• Emotion Distribution: e ∈ [0, 1]Kemo (twenty-way
soft target from ARTEMIS)

Following the standard practice for ViT classification,
we feed the encoder’s global [CLS] embedding v[CLS] into
four independent linear heads:

ŝ = Wstylev[CLS] + bstyle, t̂ = Wtypev[CLS] + btype,

ĉ = Wschoolv[CLS] + bschool, ê = Wemov[CLS] + bemo,

where the first three heads are softmax classifiers and
the last is a Kemo-dimensional sigmoid output. The total
objective is the weighted sum of the captioning loss and
four auxiliary losses:

L = Lcap + αs LCE(s, ŝ) + αt LCE(t, t̂)

+αc LCE(c, ĉ) + αe LBCE(e, ê)
(1)

where Lcap is the standard cross-entropy over decoder
tokens and we set αs = αt = αc = αe = 0.1 as an example
weighting. The auxiliary heads encourage the encoder to
encode stylistic features with the aim of encouraging the
language model decoder to be more expressive in captions.
A picture of the computation graph is shown in Fig. 1.

Training details We fine-tune the BLIP base checkpoint
for five epochs on a subset of 1,004 image–caption pairs
from the ARTPEDIA dataset. We use the AdamW optimizer
(η = 3 × 10−5) with mixed-precision training, and run all
experiments on a single NVIDIA T4 GPU with 16GB of
memory.

5. Experiments
To isolate the impact of each of our auxiliary heads,

we fine-tuned BLIP under four configurations (note that all
models share identical hyperparameters outlined in 4.6):

1. Caption-only. BLIP is fine-tuned on ARTPEDIA cap-
tions with no auxiliary heads. This serves as our
single-task baseline.

2. Multi-head (equal). All four heads—style, art-type,
art-school, emotion-dist—are enabled with a uniform
weight of α = 0.1 each (Eq. 1).

3. Head-dominant (style). We bias training toward style
by setting αstyle = 0.9 and the other weights to 0.1.

4. Head-dominant (type / school / emotion). Analo-
gous runs where art-type, art-school, or emotion re-
ceives the 0.9 weight while the remaining heads keep
0.1. These three additional runs let us probe how pri-
oritizing a single attribute reshapes caption content.

Quantitatively, we report BLEU, ROUGE-L, ME-
TEOR, and BERTSCORE on a 10 % held-out test split (see
App. C for metric details). For stylistic analysis we com-
pute adjective density, TTR and FK-grade.

Quantitative Results The results can be seen in Table 4.
As expected, the frozen BLIP baseline scores highest on
surface-overlap metrics (BLEU 28.7, chrF 38.3), but the
captions are more descriptive rather than evocative (e.g.
only 2.6% adjective rate, FK 3.3, etc.). When finetun-
ing on captions alone, BLEU and chrF fall sharply while
other stylistic metrics show modest gains or small change
(e.g. METEOR, adjective usage, and BERTScore nudge
upward).

The pre-trained BLIP model was optimised on 129 M
web pairs, so it naturally achieves the highest n-gram over-
lap (BLEU/chrF). Fine-tuning solely on ARTPEDIA shrinks
that web vocabulary to a few thousand art captions; as a re-
sult surface metrics plunge, yet METEOR and BERTScore
rise slightly, indicating that the model is learning task-
specific synonyms while losing verbatim overlap. The jump
in adjective density confirms that even a small amount of
domain data encourages richer modifiers.

Adding a single emotion–distribution head increases
stylistic richness: METEOR climbs to 10.6, adjective den-
sity reaches its maximum, FK grade more than doubles,
and the fall in TTR points to greater lexical variety. The
cost is lower BLEU/chrF, confirming that heightened affec-
tive language reduces n-gram overlap with human refer-
ences.

Overweighting any one attribute head noticeably steers
caption style (see Sec. 5). For instance, style-dominant
captions favor niche terms; type-dominant runs preserve
surface fidelity (highest BLEU among single-heads), while
emotion-dominant captions are the most evocative.

Overall, the equally-weighted configuration (α = 0.1
for all four heads) achieves the best compromise: BLEU
rebounds to 24.6, chrF and ROUGE attain or approach
their peaks, and all stylistic metrics remain well above the
caption-only baseline: showing that a gentle multi-task sig-
nal enriches prose without sacrificing factual grounding.



Key Takeaways

• Finetuning with captions alone is brittle:
BLEU/chrF collapse when auxiliary control
signals are absent which indicates overfitting
to the small artistic corpus.

• Balanced multi-task architecture wins:
equal α (0.1) per head yields the best trade-off
between surface accuracy and stylistic depth.

• Head dominance is a stylistic dial: boosting
a single head meaningfully amplifies its trait
but can degrade other orthogonal quality met-
rics.

Qualitative Results To investigate how each auxiliary
signal shapes generation, we ran four “dominant–head”
models in which a single head receives α = 0.9 while the
remaining heads keep α = 0.1. Figure 2 highlights how
each auxiliary head shapes the narrative tone of the cap-
tions.

For the portrait in the first row, the baseline offers a
terse description (“a man in a suit and hat”), whereas
the equally-weighted configuration adds concrete, verifiable
details (beard, black hat, paintbrush) without straying from
the image. When the emotion head is dominant, the prose
becomes even more vivid, inventing a “white suit and white
coat” that does not exist, revealing the head’s tendency to
sacrifice factual precision for affective flourish (also re-
flected in the lower BLEU score). The type dominant cap-
tion, by contrast, only appears to “see” material features in
the foreground (e.g. “a man with a beard and mustache”,
but dropping the paintbrush, illustrating how the type head
looks more at the main subject rather than specific details).

The cubist female portrait in the second row shows a
different pattern with respect to figure pose: the baseline
casts it as a woman “sitting in front of a mirror,” while the
equally-weighted model corrects the pose, calling it simply
a “woman’s face in the foreground.” The emotion-dominant
variant appears to embellish posture (“hands on her knees,
feet on the ground”), again trading true exact accuracy for
vividness and exact minute features.

Finally, in the rainy street scene (third row) the equally-
weighted model disambiguates plurality (“three people
walking in the rain”), whereas the emotion-dominant cap-
tion spins a short narrative about “a couple walking through
the streets of Paris,” importing setting and a specific emo-
tional relationship that are not guaranteed by the pixels
alone. The school-dominant run shifts focus to curatorial
language, noting the “right half-length of the painting” and
a “couple in the foreground,” mirroring catalog descriptions
more than everyday speech.

Across all three examples, a consistent theme is that bal-
anced heads enrich captions, while overweighting a single
head pushes the text toward specific behaviors reflective of
the emphasized feature, often at the expense of other forms
of fidelity.

Connection Between Quantitative and Qualitative Re-
sults The quantitative trends seen in Table 4 appear to be
consistent with the linguistic “pressure” that each training
configuration seems to observe, as discussed in 5.

For instance, when we overweight the style head, which
maps to coarse historical time periods, the model inserts
specialist terms that are rarely present verbatim in the refer-
ences, lowering BLEU/chrF, yet the added jargon lengthens
sentences and lifts FK grade.

Emphasizing the art-type head (categories like reli-
gious, landscape, or still-life) has the opposite effect: those
medium descriptors appear frequently in museum captions,
so n-gram metrics stay high, but METEOR only inches up-
ward because these nouns add little syntactic variety.

A strong art-school signal (e.g., Italian, Flemish,
French) appears to inject more long proper-name modi-
fiers that inflate ROUGE (token overlap) while hurting chrF
(character mismatch), explaining the divergent scores in the
school-dominant run.

Finally, emphasizing the twenty-way emotion distribu-
tion head forces the decoder to output affective adjec-
tives drawn from ARTEMIS, which seems to drive ME-
TEOR and FK sharply upward, but it also introduces novel
color/mood-related vocabulary that diverges from ground-
truth phrasing, hence the drop in BLEU and BERTScore.

The equal-weight model balances these competing
forces: stylistic heads enrich prose, factual heads anchor
surface overlap, and the result is the best joint perfor-
mance across BLEU, ROUGE and the stylistic indicators.
However ultimately the “best” caption model is task-
dependent; our head-weight experiments demonstrate
that by simply tuning the head weights we can steer
the model toward either higher factual overlap or richer
stylistic vocabulary, letting practitioners trade precision
for expressiveness according to their needs.

6. Conclusion
Across all of our experiments—whether using purely su-

pervised training or leveraging self-supervised DINO pre-
training—we used the ConvNeXt-Base (FB-IN22K) back-
bone, and it consistently outperforms other pretrained archi-
tectures in extracting both stylistic and semantic cues from
art images. it produces richer “art features” that capture not
only what objects appear in a painting but also how they
are rendered in a particular style. When fine-tuned on art-
specific tasks—such as style classification, emotion predic-
tion, or caption generation—ConvNeXt-Base (FB-IN22K)



Model Variant BLEU CHRF ROUGE METEOR BERT ADJ.% TTR FK

Baseline (pre-trained) 28.7 38.3 13.5 6.98 15.4 2.6 80.4 3.3
Caption-only fine-tune 16.9 28.1 15.4 8.05 17.8 3.9 82.0 3.1

Single-head
Emotion (αemo = 0.9) 22.9 33.9 15.8 10.6 9.1 5.1 72.1 6.4
Style (αstyle = 0.9) 20.5 26.8 15.6 10.2 11.8 3.6 76.7 5.2
Type (αtype = 0.9) 25.2 34.2 14.5 8.6 13.5 4.1 77.2 4.7
School (αschool = 0.9) 16.5 14.7 16.2 10.3 12.2 4.5 77.4 5.0

Multi (all heads, 0.1 each) 24.6 38.1 16.4 11.1 11.9 4.5 77.1 5.3

Table 4. Quantitative comparison of baseline, caption-only fine-tune, and multi-task variants. Higher is better for BLEU, chrF, ROUGE,
METEOR, BERTScore; higher adjective density (Adj.%), FK grade indicate richer language, while lower TTR indicates more lexical
diversity. The best performing model for each metric is highlighted.

Baseline: a painting of a man in a suit and hat
Equally-Weighted: a painting of a man with a beard, wearing a black hat, and holding a
paintbrush
Emotion-Dominant: the painting depicts a man in a white suit and a white coat, with a black
hat, is shown in the foreground.
Type-Dominant: a painting of a man with a beard and mustache

Baseline: a painting of a woman sitting in front of a mirror.
Equally-Weighted: a painting of a woman’s face is shown in the foreground
Emotion-Dominant: the painting depicts a woman in a white dress, with her hands on her
knees and feet on the ground, as if she is looking at the viewer.

Baseline: a painting of people walking down a street with umbrellas
Equally-Weighted: a painting of three people walking in the rain
Emotion-Dominant: the painting depicts a couple walking through the streets of paris.
School-Dominant: The right half-length of the painting depicts a couple in the foreground

Figure 2. Qualitative examples of generated captions. For each artwork we show the original image, the baseline caption, and the caption
from our fine-tuned model.

delivers more nuanced and accurate representations than
any competing pretrained backbone, making it our recom-
mended choice for art-focused training pipelines.

In the future, we can transfer the DINO self-supervised
pretraining on ArtEmis or other art image datasets using
ConvNeXt-base backbone to the encoder so that it has al-
ready internalized rich, emotion-aware art features, it adapts
much more quickly and accurately to art image annota-

tions—whether the task is style classification, attribute tag-
ging, or caption generation.

Overall, we clearly demonstrate that augmenting BLIP
with a small suite of auxiliary heads yields captions that
are demonstrably richer than those produced by either the
frozen or caption-only models. A uniform weight across
style, type, school and emotion provides the strongest all-
round performance—recovering n-gram fidelity while al-



most doubling descriptive markers such as adjective den-
sity and FK grade. Head-dominant variants confirm that the
framework is controllable: raising a single weight tips the
prose toward that attribute, be it art-historical jargon, labels,
or ”emotional” adjectives. These findings show that multi-
head BLIP not only boosts caption quality but also gives
curators and assistive-tech designers a simple dial for bal-
ancing factual accuracy against stylistic flare.
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Emotion
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Figure 3. Examples of paintings and their corresponding labels for each classification task.

Figure 4. The training and validation curves for the Convnext
model for the full and filtered training dataset sizes. The results
show that the model trained on the full dataset seems to overfit
while the training accuracy and the validation accuracy are closer
for the model trained on the higher-quality dataset.

Figure 5. The training and validation curves for the vit model for
the full and filtered training dataset sizes. The results show that
the model trained on the full dataset seems to overfit while the
training accuracy and the validation accuracy are closer for the
model trained on the higher-quality dataset.

Model Training Accuracy Test Accuracy

vit 40.75% 36.74%
convnext 40.64% 37.00%
DINO 38.47% 35.82%
Table 6. Training and test accuracy for google/vit-base-patch16-
224-in21k and convnext base.fb in22k (from top to bottom) on the
emotion classification task using the smaller dataset with only im-
ages with more than 40 human annotations.

B. Captioning Model Details

We chose BLIP because (1) it is relatively lightweight
(∼200M parameters), enabling us to rapidly experiment and
fine-tune within our compute constraints; (2) it is fully open
source and easy to modify end-to-end; and (3) it was pre-
trained on 129 million noisy image–text pairs, providing
strong zero-shot performance on artwork even before fine-
tuning. This makes it well suited for our setting, where the
dataset of ”artistic” captions is limited in size.

This pretrained checkpoint was trained on 129 million
noisy image–text pairs from the web and serves as a strong
general-purpose captioning model. By comparing our fine-
tuned version of BLIP, which incorporates supervision from
the ArtPedia dataset as well as an auxiliary emotion classifi-
cation objective, we aim to evaluate whether this additional
training improves performance on metrics related to stylis-
tic and artistic description.



Features All Possible Labels

Emotion [1] amusement, anger, awe, contentment,
disgust, excitement, fear, sadness,
something else

Style [1] Impressionism, Northern Renaissance,
Post Impressionism, Expressionism,
Abstract Expressionism, Romanticism,
Symbolism, Naive Art Primitivism, Cu-
bism, Realism, Minimalism, Baroque,
Art Nouveau Modern, Pop Art, Rococo,
Early Renaissance, Contemporary Real-
ism, Color Field Painting, Ukiyoe, Man-
nerism Late Renaissance, High Renais-
sance, New Realism, Fauvism, Action
painting, Synthetic Cubism, Analytical
Cubism

School [5] Italian, Dutch, French, Flemish, Ger-
man, Spanish, English, Netherlan-
dish, Austrian, Hungarian, Ameri-
can, Danish, Swiss, Russian, Scottish,
Belgian, Greek, Catalan, Bohemian,
Swedish, Other, Irish, Norwegian, Pol-
ish, Finnish, Portuguese

Type [5] religious, portrait, landscape, mytholog-
ical, genre, still-life, historical, other, in-
terior, study

Emotion [10] agreeableness, anger, anticipation, arro-
gance, disagreeableness, disgust, fear,
gratitude, happiness, humility, love,
optimism, pessimism, regret, sadness,
shame, shyness, surprise, trust, neutral

Table 7. The full list of all possible labels for each classification
task.

Dataset Split Number of Images
Training 1004
Test 87

Table 8. Preliminary training/testing data size for Captioning
Model

C. Evaluation Details

For each test-set image, which is paired with ground-
truth reference captions, we compare the outputs of both
the baseline and fine-tuned models against these references.

• Overlap-Based Metrics: BLEU, CHRF, and
ROUGE are traditional metrics that compare how
much the generated captions overlap with reference
captions. BLEU focuses on matching word sequences
(n-grams), chrF works at the character level, and
ROUGE-L looks for the longest shared phrases.
While widely used, they don’t always reflect how

fluent or expressive a caption is.

• Semantics-Aware Metrics: METEOR goes beyond
exact word matches by considering word stems, syn-
onyms, and paraphrases, making it better at captur-
ing meaning. BERTSCORE measures how similar the
generated and reference captions are by comparing
their meanings using embeddings from a pretrained
language model. This makes it particularly valuable
for evaluating emotional and contextual alignment.

• Style and Expressiveness Metrics: Adjective Den-
sity (Adj.%) shows how many words in a caption
are adjectives — a higher percentage often means the
caption is more descriptive or stylistic. Type–Token
Ratio (TTR) measures vocabulary variety by com-
paring the number of unique words to the total word
count. Flesch–Kincaid Grade Level (FK) estimates
how complex a caption is, with higher scores indi-
cating longer and more intricate sentence structures.
These metrics help capture the stylistic richness and
expressive tone important in sentiment-aware caption-
ing.


